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Natural convection along a vertical complex wavy surface

Lun-Shin Yao *

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287, United States

Received 13 January 2005; received in revised form 24 June 2005
Available online 25 August 2005
Abstract

A previously proposed transformation has been applied to the natural-convection boundary layer along a complex
vertical surface created from two sinusoidal functions, a fundamental wave and its first harmonic. The numerical results
demonstrate that the additional harmonic substantially alters the flow field and temperature distribution near the sur-
face. The conclusion that the averaged heat-transfer rate per unit-wetted wavy surface is less than that of a correspond-
ing flat plate [L.S. Yao, Natural convection along a vertical wavy surface, ASME J. Heat Transfer 105 (1983) 465–468]
has been confirmed for this more complex surface. On the other hand, the total heat-transfer rates for a complex surface
are greater than that of a flat plate. The numerical results show that the enhanced total heat-transfer rate seems to
depend on the ratio of amplitude and wavelength of a surface.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since the work of Schmidt and Beckman [1], natural
convection has been one of the most important research
topics in heat transfer [2,3]. The problem of natural or
mixed convection along a sinusoidal wavy surface ex-
tended previous work to complex geometries [4–6], and
has received considerable attention due to its relevance
to real geometries. An example of such geometry is a
‘‘roughened’’ surface that occurs often in problems
involving the enhancement of heat transfer.

The method of transformed coordinates was origi-
nally proposed in [4] as a tool to solve heat-transfer
problems in the presence of irregular surfaces of all
kinds. This method is not limited to heat-transfer prob-
lems, but is also applicable to other problems in engi-
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neering and science, including those with unsteady
boundary conditions. Its generality has been demon-
strated by its original application to the natural convec-
tion along a sinusoidal wavy surface [4] because such a
surface can be viewed as an approximation to certain
practical geometries of relevance in heat transfer. A vast
amount of literature about convection along a sinusoi-
dal wavy surface is available for different heating condi-
tions and various kinds of fluids [7–32].

One of the reasons why a roughened surface is more
efficient in heat transfer is its capability to promote fluid
motion near the surface; in this way a complex wavy sur-
face, a sum of two or more sinusoidal surfaces, is ex-
pected to promote a larger heat-transfer rate than a
single sinusoidal surface. This complex geometry will
promote a correspondingly complicated motion in the
fluid near the surface; this motion is described by the
nonlinear boundary-layer equations. This expectation
is the basis of the current study even though only lami-
nar natural convection is studied. The mathematical
ed.
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Nomenclature

a1, a2 wave amplitudes
g gravitational acceleration
Gr Grashof number, Eq. (3c)
‘ fundamental wavelength
Nu Nusselt number
p pressure
Pr Prandtl number
s surface length, Eq. (9)
T, h temperature
u, v velocity components
x, y, r coordinates
m kinematic viscosity

b thermal expansion coefficient
q density
r surface geometry function, Eq. (1)

Superscripts
– dimensional quantity
_ transform variables, Eq. (3)

Subscripts

w surface
1 free stream
x derivative with respect to x
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formulation following [4] is presented in the next section.
The numerical results for unit Prandtl number are ex-
plained in the third section. The major conclusion is that
the total heat-transfer rate for a wavy surface of any
kind is, in general, greater than that of the correspond-
ing flat plate, and may be a function of the ratios of
amplitudes to wavelengths of the surface. On the other
hand, the result that the average heat-transfer rate per
unit of wetted surface for a wavy surface is less than that
of a flat plate, as reported in [4], is confirmed. The total
heat-transfer rate is the more important factor in design-
ing a heat-transfer surface.
Fig. 1. Physical model and coordinates.
2. Formulation of the problem

Following [4], the geometric model considered is a
semi-infinite vertical complex plate whose surface is
described by

�y ¼ �rð�xÞ ¼ a1 � sin
2p�x
‘

� �
þ a2 � sin

4p�x
‘

� �
; ð1Þ

where ‘ is the fundamental wavelength. The mathemat-
ical formulation proposed in [4] applies to a surface of
arbitrary shape; a sinusoidal surface was used as the spe-
cific example in the computations. Here the study is fo-
cused on a complex surface formed by a fundamental
wave and its first harmonic, which is more complex than
the single sinusoidal surface extensively studied in the
past two decades. This particular complex surface can
reveal more information about practical geometric ef-
fects. The surface temperature is held at Tw, warmer
than the ambient temperature T1.

The exact dimensional governing equations in two-
dimensional Cartesian coordinates ð�x; �yÞ (see Fig. 1)
are the Navier–Stokes equations and the energy equa-
tion. The dimensionless form of the equations, after
ignoring terms of small orders in Gr, is
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Fig. 2. (a) Temperature distribution, (b) axial velocity, (c) local
heat transfer rate.
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where

x¼ �x
‘
; r ¼ �y� �r

‘
�Gr1=4; ð3aÞ

u
_ ¼ �u‘

mGr1=2
; t

_ ¼ ð�v� �r�x�uÞ‘
mGr1=4

; p ¼ �p‘2

qm2Gr
; h¼ T � T1

T w � T

ð3bÞ

and

Gr ¼ qg‘3ðT w � T1Þ
m2

; ð3cÞ

is the Grashof number. The transformation in (3a) maps
the complex surface into a flat surface. The transformed
coordinates (x, r) are not orthogonal, but a regular rect-
angular computational grid can be easily fitted onto the
transformed coordinates. Problems associated with a
complex geometry can then be studied by straightfor-
ward numerical methods. This is a practical method par-
ticularly for the study of heat-transfer enhancement,
which usually deals with complex geometries. As is
apparent from (3), the velocity components ðu_; m_Þ are
neither parallel to nor perpendicular to the complex sur-
face. The convection induced by the irregular surface is
explicitly described in Eq. (2). Eq. (2c) indicates that the
pressure gradient along the r-direction is O(Gr�1/4). This
implies that the lowest-order pressure gradient along the
x-direction can be determined from the inviscid-flow
solution as in traditional boundary-layer formulations.
For a natural convection problem, this pressure gradient
is zero. Eq. (2c) also shows that Gr1=4 op

or is O(1) and is
determined by the left-hand side of the equation. Elimi-
nation of op

or between (2b) and (2c) results in three equa-
tions for u, v and h. They are
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It should be noted that the normal length and velocity
scales are independent of the wavelength. The axial
length scale is the wavelength. This is the reason why
there is no similarity solution for a complex surface.
For a slightly curved surface, say, r � Gr�1/4, the curva-
ture effects are negligible. This is a case for which the
Prandtl transposition theorem can be readily applied
[33]. For a wavy surface of finite amplitude or curvature,
curvature effects are important and cannot be ignored.
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The associated boundary conditions are

(1) On the wavy surface (y = 0)
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h ¼ 1 ðconstant temperatureÞ; and

u ¼ v ¼ 0 ðno slip and no penetrationÞ ð6aÞ
(2) Matching with the quiescent free stream (y! 1)
h and u ! 0 ð6bÞ
A finite-difference solution of (4) is straightforward
since the computational grids are fitted to shape of the
wavy surface. The central difference is used for the diffu-
sion terms and the forward-difference scheme is used for
the convection terms. The singularity at x = 0 has been
removed by the scaling; therefore, the computation can
be started at x = 0, and then marches downstream
implicitly. After several tries, 0.005 and 0.01 are used
for the x- and y-grids, respectively, and the size of the
computational domain is x = 2 and y = 80. Such small
grid sizes are probably over conservative, but can be eas-
ily handled by any personal computer today.
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Fig. 3. Plot of velocity vectors of (a) case 1, (b) case 2
3. Results and discussion

Numerical results have been obtained for the Prandtl
number one. In Fig. 2a, the temperature distribution is
plotted for two cases, case 1 is a1 = 0.2, a2 = 0.5; and
case 2 is a1 = 0.5, a2 = 0.2 at x = 0.25 and 0.75, respec-
tively. For case 1, x = 0.25 and 0.75 are the nodes of the
wavy surface, while x = 0.25 is the crest and x = 0.75 is
the trough for the case 2. The axial velocity, whose direc-
tion is along the x-coordinate and nonparallel to the
wavy surface, is plotted in Fig. 2b. They show that the
size of the selected computational domain is sufficient
large to satisfy the boundary condition (6b).

The local Nusselt number, defined in terms of
(Tw � T1), thermal conductivity, k, and the fundamen-
tal wavelength, ‘, can be expressed as

Nuxð4x=GrÞ1=4 ¼ �ð1þ rxÞ1=2
oh
oy

����
y¼0

ð7Þ

Eq. (7) is plotted in Fig. 2c for a1 and a2 = 0, 0.2, and
0.5, respectively. The shape of local heat-transfer rate
is similar to those presented in [4]. An interesting new
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fact is that the local heat-transfer rate is insensitive to
the amplitude, which is less than 0.5 of the fundamental
wave when a2 = 0.5. This is due to the fact that the flow
velocity near the wavy surface determines the local heat-
transfer rate. If the amplitude of the harmonic wave be-
comes dominant, the fundamental wave is a lesser factor
in determining the surface curvature; consequently, the
amplitude of the fundamental wave plays a lesser role
in determine the local heat-transfer rate. This can be
seen clearly with the plot of velocity vectors near the sur-
face in Fig. 3. The wavy surface induces a local
approaching and leaving flow slightly downstream from
the trough as well as slightly upstream of the crest of
the wavy surface. Such a flow pattern is the mechanism
that enhances the local heat-transfer rate. For case 1, the
wavelength of the wavy surface is ‘/2, so the heat trans-
fer enhancement is twice as large as for the case 2. This
can also be seen from the plot of isothermal lines near
the surface in Fig. 3.

The averaged Nusselt number per unit-wetted surface
area can be obtained by integrating Eq. (7)

Nu=Gr1=4=s ¼ 1

s
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x

ð4xÞ1=4
� oh
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" #
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Z x

0
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xÞ

1=2 � dx: ð9Þ

Eq. (8) is plotted in Fig. 4. It confirms what has been
concluded in [4], that is, the averaged Nusselt number
per unit surface area for a wavy surface is smaller than
that of a corresponding flat plate. It is shown in
Fig. 4a that the Nusselt number decreases when the
amplitude of the harmonic wave increases while the
amplitude of the fundamental wave is fixed at 0.5. A
comparison of two cases, a1 = 0.5, a2 = 0.0 and
a1 = 0.5, a2 = 0.2, shows that the ratio of wave ampli-
tude and its wavelength may be an important parameter
in determining the local heat-transfer rate. Thus, the ra-
tio of the wave amplitude to wavelength changes when
the amplitude of the harmonic wave increases, so does
the averaged heat transfer rate shown in Fig. 4a. In
Fig. 4b, the Nusselt number is insensitive to the increase
of the amplitude of the fundamental wave while the
amplitude of the harmonic wave is held at 0.5. This is be-
cause the variation of the amplitude of the fundamental
wave whose magnitude is smaller than that of the har-
monic wave has little effect on the ratio of amplitude
to wavelength. This results that the ratio of amplitude
to wavelength for the surface is determined by the har-
monic wave when its amplitude is held at 0.5, and is
not affected by changing the amplitude of the fundamen-
tal wave.

The total heat-transfer rate, Eq. (8) without division
by s, is plotted in Fig. 4c. It shows that the total heat-
transfer rate for the wavy surface is indeed much greater
than that of a flat plate. The enhanced rate seems to be
proportional to the ratio of amplitude to wavelength of
the surface. The rate for a2 = 0.5 and a1 less than 0.5 is
almost twice as much as the heat-transfer rate of a flat
plate. This is a result that was not reported in [4]. It
seems to convey an incorrect impression that a wavy sur-
face is inferior in enhancing natural-convection heat
transfer. The total heat-transfer rate is a more important



286 L.-S. Yao / International Journal of Heat and Mass Transfer 49 (2006) 281–286
factor in designing a heat-transfer surface than its aver-
aged rate. It should be noted that the model study in this
paper is limited to laminar natural convection. A wavy
surface can trigger an early transition of a natural-con-
vection boundary layer, which can further enhance the
cooling capability of a wavy surface. Additional study
is required to clarify this mechanism.
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